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Abstract

This paper presents the solution of the two-phase flow equations coupled to nonlinear heat conduction using the

Jacobian-free Newton–Krylov (JFNK) method which employs a physics-based preconditioner. Computer simulations

will demonstrate that the implicitly balanced solution obtained from the JFNK method is more accurate than tradi-

tional approaches that employ operator splitting and linearizing. Results will also indicate that by employing a physics-

based preconditioner the implicitly balanced solution can provide a more accurate solution for the same amount of

computer time compared to the traditional approach for solving these equations. Finally, convergence plots will show

that as the transient time lengthens, the implicitly balanced solution can maintain this higher level of accuracy at much

larger time steps.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Two-phase flow has a variety of meanings in different areas. To narrow the scope of this paper, the focus

will be placed on a system of water and steam flowing through a channel which is attached to a heat

conducting solid slab. The slab is coupled to the two-phase flow in the channel through convective heat

transfer and is heated by a source (Q) which is on the opposite side of the slab from the two-phase fluid flow

(see Fig. 1). Fig. 1 shows the water flow on the left (bubbles in the water indicating two-phase flow), with a

fixed velocity inflow boundary condition (V ¼ V0) and a fixed pressure outflow boundary condition
(P ¼ P0). The slab is insulated on the top an bottom (oT

ox ¼ 0) and has a heat source on the right side which

has a cosine profile from the top to bottom (this is a simplified form of the power profile from a fission

reaction).
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Fig. 1. Problem schematic.
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This system is a very simplified version of a nuclear reactor. The heat source (Q) comes from nuclear
fission and is conducted through a metallic structure to be removed by the water-steam convection. There

are large computer codes (such as, TRAC-M [1] and RELAP5 [2,3] and their progeny) that were designed

to simulate the two-phase flow, heat conduction, and nuclear fission reaction in a nuclear reactor. The

numerical methods in these codes are based on using operator splitting to separate the nuclear reaction, the

heat conduction and the fluid flow into three independent algorithms. In addition, the semi-implicit so-

lution method for the fluid flow equations has further linearizations and operator splitting to be described

in detail in Appendix A. The basic numerical methods in these codes are still very similar to the codes that

were originally written in the late 1970s and early 1980s. Because of the small memory and very slow
computational speed of computers in the 1980s, these simplifications were required to make the simulations

tractable.

Efforts were quickly undertaken after these codes were written to increase the level of implicitness in both

TRAC-M with SETS [4] and RELAP5 with its Nearly Implicit [5]. Both of these efforts met with limited

success at creating a time integration technique that could step over the material Courant Friedrichs and

Lewy (CFL) stability limit caused by the semi-implicit integration technique [6].

Since the 1980s, when the six equation two-phase flow model was originally developed for nuclear

reactor simulation, there has been significant work on improving the equations to allow them to more
accurately model the physics of two-phase flow. This work includes the incorporation of Lagrangian

bubble and droplet fields (see [7,8] and references within) to more accurately model the interactions

between the two phases. Additional work includes modeling interfacial area transport (see [9,10] and

references within) with partial differential equations. Both of these approaches are attempts to add

physical length and times scales to the closure relations of the equation set. In two phase flow, closure

relations are used to account for physics that is not resolved by the discrete equations (similar to

turbulence models).
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In addition to work on the two-phase flow physics, new approaches have focused on improving the

spatial accuracy (see [11–13] and references within) of the numerical models. The goal of this work is to

replace the upwind differencing methods employed by TRAC-M and RELAP5 and is often based on
knowledge of the characteristics of the partial differential equations [14]. These types of numerical ad-

vection schemes require the partial differential equations to be well posed (see [15,16] and references within)

since the advection scheme is based on the eigenvalues of the equations. It should be noted that the two-

phase flow equations that are the physical model in TRAC-M and RELAP5 are not well posed. Because of

the numerical viscosity induced by the first order upwind advection scheme employed in the discretization

of these equations, the discrete solution of these ill posed equations does not exhibit problems until very fine

spatial nodalizations are used. Since the spatial discretizations employed in this paper are relatively coarse,

the ill posed nature of the equations does not effect the results of this study.
This background is not meant to be exhaustive but simply a starting place for the reader to locate other

work related to improving the accuracy of physics and spatial discretization employed by TRAC-M and

RELAP5. However, in this paper the spatial discretization and the form of the equations will be identical to

RELAP5. This paper will focus on the improved temporal accuracy obtained from implicitly balanced

solutions employing second order in time nonlinear solvers.

Employing nonlinear solvers for the two-phase equations and related nonlinearly coupled physics has

been a recent area of research by other authors (see [17–21]). In this paper the nonlinear solver will be the

Jacobian-free Newton–Krylov (JFNK) method [22–24]. This method provides an accurate approach to
couple nonlinear physics without incurring the error of operator splitting and linearizations [25]. Nonlinear

solution techniques have been very successfully employed for solving steady state problems [18,19], but

their computational cost have traditionally prevented them from being used for time accurate transients.

The key to using the nonlinear solver for a time accurate transient is the hybrid technique that is referred to

as ‘‘physics-based’’ preconditioning [26,27]. The key idea behind physics-based preconditioning is to rec-

ognize that a fast but inaccurate solution method can be coupled to an accurate solution method to provide

a hybrid which is both fast and accurate.

As opposed to the other methods of increasing the implicitness of the solution of the two-phase flow
equations [4,5], this approach uses the operator split semi-implicit (OSSI) method that is the basic solution

algorithm of the current production two-phase system codes [1–3]. This traditional method, which has

problems with stability and accuracy, is used to provide a solution which is close to the correct answer.

Given a good estimate of the solution, the JFNK method, which is stable and accurate, quickly converges

to the correct solution with only a small amount of computational work.

Using this hybrid approach has three main advantages. First, it takes advantage of the 20 years of in-

vestment to optimize the OSSI method. Second, if the solution algorithm contains both the OSSI and

JFNK methods, either one can be employed where appropriate. For example, because of the high opti-
mization of the OSSI method it is a better algorithm for scoping studies where accuracy is not critical. This

fast method can be used to determine which simulations should be run with JFNK to obtain accurate

solutions. In addition, there are some transients that are very fast and require small time steps to resolve the

physical time scales. For these transients the OSSI method may provide adequate accuracy. For transients

that require high accuracy (such as using a computer simulation to extend or fill-out an experimental data

base) the JFNK method is an obvious choice. Also for transients that have very slow physical time scales

(or steady state) the stability and accuracy of the JFNK method make it an obvious choice. The third and

final advantage is that this hybrid approach provides a mechanism for coupling different physics [28–30]
within the same simulation. Because the operator split approaches can be used as physics-based precon-

ditioners, existing algorithms can be employed to provide preconditioners for implicitly balanced solutions

of complicated nonlinearly coupled multi-physics, multi-length, and multi-time scale simulations. For ex-

ample one could use an existing 3-D computational fluid dynamics (CFD) algorithm and an existing 1-D

two-phase flow algorithm to provide a coupled solution that includes part of the domain in 1-D from one
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algorithm and the rest of the domain in 3-D. These two algorithm could then be coupled by using the

existing algorithms as physics-based preconditioners for an implicitly balanced solution for the two coupled

systems. This is precisely what is done for coupling the 1-D fluid flow to the 2-D heat conduction in this
paper.

The work in this paper is an extension of work previously done by other authors. Using Newton’s

method to solve a simplified form of the two-phase flow equations has been employed by Toumi et al. [17].

Downar and co-workers [20] employed a Jacobian-free Newton’s method to solve a transient which couples

a production two-phase flow code, TRAC-M [1], and a 3-D neutron kinetics code, PARCS [31]. Kastanya

[18,19] used Newton’s method to solve steady state problems with a simplified two-phase flow model

coupled to neutron diffusion. Frepoli et al. [21] used Newton’s method to solve a eight equation model for

transient two-phase flow. The work in this paper differs from these previous works in three ways. First, a six
equation model for two-phase flow is solved with an implicitly balanced solution. Second, this two-phase

flow model is coupled to nonlinear heat conduction in a single nonlinear system to solve transient problems.

Finally, the idea of using the OSSI solution method to precondition these equations to create a fast and

accurate hybrid technique is new.

The rest of this paper has the following layout. Section 2 presents the physical model of the one-

dimensional two-phase flow equations coupled to the two-dimensional nonlinear heat conduction equation.

In Section 3, the discretized version of the physical model is presented which includes both the spatial and

temporal differencing employed. Section 4 describes the Jacobian-free Newton–Krylov solution technique
in terms of the discrete equations. In Section 5 the operator split semi-implicit algorithm is presented and it

is shown how this algorithm can be employed both as a solution technique and as a physics-based pre-

conditioner. Section 6 presents results for two test problems to demonstrate the ability of this hybrid

approach and Section 7 presents conclusions and future work.
2. Physical model problem

The equations presented in this section are taken directly from the RELAP5 computer code manual [2,3].

Once again it is noted that these equations are known to be ill-posed [15,16] and no attempt has been made

to address this problem in this study. The equation set is the standard one-dimensional, six-equation, single

pressure model with coupling to a two-dimensional nonlinear heat conduction problem. As opposed to the

simpler four equation model, in this equation set both phases have their own mass, momentum, and energy

conservation equations. Notationally the subscripts ‘‘g’’, ‘‘f’’, ‘‘s’’, and ‘‘w’’ indicate variables associated

with the gas (vapor) phase, the fluid (liquid) phase, a saturation value, and a variable associated with the

solid wall, respectively. The first equation in this model is the conservation of volume.

ag þ af ¼ 1 ð1Þ

In Eq. (1), ag is the gas volume fraction and af is the fluid volume fraction. This equation is strictly enforced

and in implementation the variable af is replaced with 1� ag. It is interesting to note that the constraint that

ag 2 ½0; 1� is not implemented directly in this equation set. In the JFNK method, this constraint has been

added to the Newton update but in the OSSI method this constraint has to be enforced throughout the

algorithm. Given the conservation of volume equation one can now write the conservation of mass

equation for the gas phase,

oagqg

ot
þ
oagqgvg

ox
¼ Cg; ð2Þ

and the conservation of mass in the fluid phase,
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oafqf

ot
þ oafqfvf

ox
¼ �Cg: ð3Þ

In these equations q is density, v is velocity, and Cg is the interfacial mass transfer given by

Cg ¼ �HigaiðTs � TgÞ þ HifaiðTs � TfÞ
h�g � h�f

: ð4Þ

Here Hig and Hif are the heat transfer coefficients between the separate phases and the interface (which is

assumed to be in saturation). The variable ai represents the interfacial area and T is temperature. The phasic
mass transfer enthalpies (h�g; h

�
f ) are calculated from the phasic enthalpies (hg; hf ) and the phasic saturation

enthalpies (hgs; hfs) by

h�g ¼
hgs if Cg > 0;
hg otherwise;

�
ð5Þ

and

h�f ¼
hf if Cg > 0;
hfs otherwise:

�
ð6Þ

It is important to note that mass transfer is equal in magnitude and opposite in sign between the gas and
fluid phases and that these equations only apply to straight pipes like the one shown in Fig. 1. The

equations in RELAP5 include terms that allow the area of the pipe to change as a function of the length.

In contrast to the work in [17–19] which employs a four equation two phase model that has a single

mixture momentum equation, this physical model has a conservation of momentum equation for the gas

phase,

agqg

ovg
ot

þ agqgvg
ovg
ox

þ ag
oP
ox

� agqgg ¼ �FwgawgðagqgÞ
2jvgjvg � aiFIjvg � vf jðvg � vfÞ � Cgðvi � vgÞ;

ð7Þ

and a conservation of momentum equation for the fluid phase,

afqf

ovf
ot

þ afqfvf
ovf
ox

þ af
oP
ox

� afqfg ¼ �FwfawfðafqfÞ
2jvf jvf þ aiFIjvg � vf jðvg � vfÞ þ Cgðvi � vfÞ: ð8Þ

Here P represents pressure and g is the gravity vector. The momentum losses due to wall and interfacial

friction are given in terms of a phasic wall area (awg; awf ), phasic wall friction coefficients (Fwg; Fwf ), and an

interfacial friction coefficient (FI). Note that the pressure gradient is partitioned between phases, the wall

friction is a momentum sink, and the interfacial friction has equal magnitude and opposite sign between the

two phases. The terms which include Cg account for the momentum lost or gained by the new mass ap-

pearing at the interfacial velocity vi which is assumed to be the average of the two phasic velocities (this is
simpler than how vi is computed in RELAP5 [2,3]). Another notable difference with the RELAP5 mo-

mentum equations is the omission of the virtual mass terms.

In contrast to the four equation model which assumes thermal equilibrium between the two phases, this

model has two energy equations. The first for conservation of energy in the gas phase,

oagqgUg

ot
þ
oagqgUgvg

ox
þ P

oag
ot

þ P
oagvg
ox

¼ HwgawgðTw � TgÞ þ HigaiðTs � TgÞ þ Cgh�g; ð9Þ

and the second for conservation of energy in the fluid phase,
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oafqfUf

ot
þ oafqfUfvf

ox
þ P

oaf
ot

þ P
oafvf
ox

¼ HwfawfðTw � TfÞ þ HifaiðTs � TfÞ � Cgh�f : ð10Þ

Here, (Ug;Uf ) are the phasic specific internal energies and (Hwg;Hwf ) are the phasic wall heat transfer co-

efficients. The RELAP5 equations include an additional wall heat transfer term (that has been omitted here)

that uses ðTw � TsÞ as the driving potential. The physical model of this study is closed out by including a

two-dimensional nonlinear heat conduction equation to represent conservation of energy in the solid wall,

oew
ot

� o

ox
jx

oTw
ox

� o

oy
jy

oTw
oy

¼ � HwgawgðTw
�

� TgÞ þ HwfawfðTw � TfÞ
�
þ Qnw: ð11Þ

Here, (jx; jy) are the thermal conductivities in the x and y direction respectively, Qnw is the source term on

the side opposite the side of the wall contacting the fluid (see Fig. 1) which represents the energy imparted

into the wall from nuclear fission. The variable ew is the wall energy which is computed from

ew ¼
Z Tw

T0

qwCp dTw: ð12Þ

The variableCp represents the specific heat of the wall. Note that in Eq. (11) the energy exchange with the fluid

and vapor is equal in magnitude and opposite in sign between the wall and the two phasic energy equations.

Additionally awg and awf have nonzero values only in cells that are adjacent to the fluid and Qnw is nonzero

only in the cells adjacent to the opposite edge from the fluid (see Fig. 1). For details on the equation of state
for the fluid and solid see Appendix B. For the form of the nuclear fission energy source (Qnw) see Appendix C.
3. Discrete equations

This section will present the discrete equations that are solved computationally. The discretization is a

finite volume discretization on a staggered mesh. On this mesh the velocities are located at the cell faces,

and the volume fractions, energies, and pressures are located at cell centers. The two-dimensional nonlinear
solid wall heat conduction is also modeled with a finite volume discretization. This is different than the node

based discretization employed by RELAP5 [2,3]. This choice of discretization has led to different boundary

conditions than the RELAP5 code uses (i.e., the energy exchange on the boundaries is represented as source

terms in the finite volume discretization whereas it is represented by fluxes in the node based discretization).

To write the finite volume form of the equations one has to define two volumes, Vf which is the volume of

the fluid cell, and Vw which is the volume of the wall cell. These are given by

Vf ¼ Dx� Dyf ; ð13Þ
Vw ¼ Dx� Dyw; ð14Þ

where Dyf is the width of the fluid control volume and Dyw is the width of the wall control volume.

The spatial discretization for the six two-phase flow equations matches that of RELAP5 and the

nomenclature of a dot above a variable ( _ðagqgÞ
n
iþ1

2

) indicates that the variable is discretized with a first order

upwind discretization. An over-bar on a variable (angq
n
g) indicates that the variable has been arithmetically

averaged to either the cell center indicated by a subscript ‘‘i’’ or a cell face indicated by a subscript ‘‘iþ 1
2
’’.

The temporal differencing is second order in time and is based on the Crank–Nicolson differencing
scheme. The terms not in the time derivative are included as a weighted average (weighting variable is H) of

the new time (superscript nþ 1) and old time (superscript n) variables. The choice of H ¼ 1
2
yields

the second order in time Crank–Nicolson method. Similarly H ¼ 1 yields implicit (backward Euler)
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differencing and H ¼ 0 yields explicit (forward Euler) differencing. Further discussion of the higher order in

time integration method will be addressed at the end of Section 4.

To simplify nomenclature the two continuity equations and the two energy equations have an implied
subscript of i since they are cell centered equations. The two momentum equations have an implied sub-

script of iþ 1
2
since they are cell face equations. One can now write the residual of the conservation of mass

equation for the gas phase (rescg) as,

rescg ¼ Vf
Dt

anþ1
g qnþ1

g

h
� angq

n
g

i
þ ð1�HÞF n

cg þHF nþ1
cg ; ð15Þ

where,

F nþ1
cg ¼ Dyf _ðagqgÞ

nþ1

iþ1
2

vnþ1

g;iþ1
2

h
� _ðagqgÞ

nþ1

i�1
2

vnþ1

g;i�1
2

i
� VfCnþ1

g : ð16Þ

Similarly the residual of conservation of mass in the fluid phase (rescf) is given by

rescf ¼ Vf
Dt

anþ1
f qnþ1

f

�
� anfq

n
f

�
þ ð1�HÞF n

cf þHF nþ1
cf ; ð17Þ

where,

F nþ1
cf ¼ Dyf _ðafqfÞ

nþ1

iþ1
2
vnþ1

f ;iþ1
2

h
� _ðafqfÞ

nþ1

i�1
2
vnþ1

f ;i�1
2

i
þ VfCnþ1

g : ð18Þ

The other two cell centered equations are the residual of conservation of energy in the gas phase (reseg)

which is given by

reseg ¼ Vf
Dt

anþ1
g qnþ1

g Unþ1
g

h
� angq

n
gU

n
g

i
þ VfPnþ1

2

Dt
anþ1
g

h
� ang

i
þ ð1�HÞF n

eg þHF nþ1
eg ; ð19Þ

where,

F nþ1
eg ¼ Dyf ð _agqgUgÞnþ1vnþ1

g

n o
iþ1

2

�
� ð _agqgUgÞnþ1vnþ1

g

n o
i�1

2

�
þ DyfPnþ1 _ðagÞnþ1vnþ1

g

n o
iþ1

2

�

� _ðagÞnþ1vnþ1
g

n o
i�1

2

�
� VfHnþ1

wg anþ1
wg ðT nþ1

w � T nþ1
g Þ � VfHnþ1

ig anþ1
i ðT nþ1

s � T nþ1
g Þ � Vf Cgh�g

� �nþ1

:

ð20Þ

The discrete form for the residual of conservation of energy in the fluid phase (resef) is

resef ¼ Vf
Dt

anþ1
f qnþ1

f Unþ1
f

�
� anfq

n
fU

n
f

�
þ VfPnþ1

2

Dt
anþ1
f

�
� anf

�
þ ð1�HÞF n

ef þHF nþ1
ef ; ð21Þ

where,

F nþ1
ef ¼ Dyf ð _afqfUfÞnþ1vnþ1

f

n o
iþ1

2

�
� ð _afqfUfÞnþ1vnþ1

f

n o
i�1

2

�
þ DyfPnþ1 _ðafÞnþ1vnþ1

f

n o
iþ1

2

�

� _ðafÞnþ1vnþ1
f

n o
i�1

2

�
� VfHnþ1

wf anþ1
wf ðT nþ1

w � T nþ1
f Þ � VfHnþ1

if anþ1
i ðT nþ1

s � T nþ1
f Þ þ Vf Cgh�f

� 	nþ1
:

ð22Þ

The two momentum equations are located at the cell face so their implied subscript is iþ 1
2
. The residual

for conservation of momentum in the gas phase (resmg) is
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resmg ¼ Vfða
nþ1

2
g q

nþ1
2

g Þ
Dt

ðvnþ1
g � vngÞ þ ð1�HÞF n

mg þHF nþ1
mg ; ð23Þ

where,

F nþ1
mg ¼ Dyfðanþ1

g qnþ1
g Þvnþ1

g ð _vg;iþ1
nþ1 � _vg;inþ1Þ þ Dyfanþ1

g Pnþ1
iþ1

�
� Pnþ1

i

	
� Vfðanþ1

g qnþ1
g Þg

þ VfðF nþ1
wg anþ1

wg Þðanþ1
g qnþ1

g Þ2jvnþ1
g jvnþ1

g þ VfC
nþ1
g ðvnþ1

i � vnþ1
g Þ

þ Vfðanþ1
i FInþ1Þjvnþ1

g � vnþ1
f jðvnþ1

g � vnþ1
f Þ: ð24Þ

The discrete form of the residual of conservation of momentum in the fluid phase (resmf) is

resmf ¼ Vfða
nþ1

2

f q
nþ1

2

f Þ
Dt

ðvnþ1
f � vnf Þ þ ð1�HÞF n

mf þHF nþ1
mf ; ð25Þ

where

F nþ1
mf ¼ Dyfðanþ1

f qnþ1
f Þvnþ1

f ð _vf;iþ1
nþ1 � _vf ;inþ1Þ þ Dyfanþ1

f Pnþ1
iþ1

�
� Pnþ1

i

	
� Vfðanþ1

f qnþ1
f Þg

þ VfðF nþ1
wf anþ1

wf Þðanþ1
f qnþ1

f Þ2jvnþ1
f jvnþ1

f � VfCnþ1
g ðvnþ1

i � vnþ1
f Þ

� Vfðanþ1
i FInþ1Þjvnþ1

g � vnþ1
f jðvnþ1

g � vnþ1
f Þ: ð26Þ

The six one-dimensional equations that describe the two-phase fluid flow are now complete. The last

equation is the two-dimensional nonlinear heat conduction which describes the conservation of energy in

the wall. In this equation the two implied subscripts are ‘‘i’’ and ‘‘j’’. The residual for the conservation of

energy in the wall (resew) is given in discrete form by

resew ¼ Vw
Dt

enþ1
w

�
� enw

�
þ ð1�HÞF n

ew þHF nþ1
ew ; ð27Þ

where,

F nþ1
ew ¼ � Dyw

Dx
jnþ1

x;iþ1
2

T nþ1
w;iþ1

hn
� T nþ1

w;i

i
� jnþ1

x;i�1
2

T nþ1
w;i

h
� T nþ1

w;i�1

io
� Dx
Dyw

jnþ1

y;jþ1
2

T nþ1
w;jþ1

hn
� T nþ1

w;j

i
� jnþ1

y;j�1
2

T nþ1
w;j

h
� T nþ1

w;j�1

io
þ VwHnþ1

wg anþ1
wg ðT nþ1

w;1;j � T nþ1
g;j Þ þ VwHnþ1

wf anþ1
wf ðT nþ1

w;1;j � T nþ1
f;j Þ � VwQnþ1

nw :

ð28Þ

It should be noted that the areas (awg and awf ) are zero except when the wall control volume is adjacent to

the fluid and the source term Qnw is only nonzero on the edge of the wall on the opposite side of the fluid

(see Fig. 1).

If we define nx to be the number of control volumes in the x direction and ny to be the number of control

volumes in the y direction then the total number of unknowns N for the discrete equations are

N ¼ ð6� nxÞ þ ðnx� nyÞ: ð29Þ

This gives a nonlinear system of N equations and N unknowns where nx copies of Eqs. (15), (17), (19), (21),
(23), and (25) are solved for ag;i; Pi;Ug;i;Uf;i; vg;iþ1

2
; vf;iþ1

2
for i 2 ½1; 2; . . . ; nx� and nx� ny copies of Eq. (27) are

solved for Tw;i;j for i 2 ½1; 2; . . . ; nx� and j 2 ½1; 2; . . . ; ny�.
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4. Jacobian-free Newton–Krylov

Given the description of the nonlinear system in the previous section, the solution of these residual
equations will be presented here. A modified form of Newton’s method called physics-based preconditioned

Jacobian-free Newton–Krylov is used to solve the discrete nonlinear equations. Newton’s method is de-

signed to solve nonlinear systems of the form,

resðxÞ ¼ 0; ð30Þ

where res ¼ ½rescg; rescf ; reseg; resef ; resmg; resmf ; resew�T (Eqs. (15), (17), (19), (21), (23), (25), and (27))

and x ¼ ½ag; P ;Ug;Uf ; vg; vf ; Tw�T. Newton’s method solves this nonlinear system iteratively by solving a

sequence of linear problems defined by

Jk dxk ¼ �resðxkÞ: ð31Þ

The matrix J is the Jacobian matrix, the superscript k is the Newton iteration and dxk is the update vector.

The (i; j) element of the Jacobian matrix is the derivative of the ith equation with respect to the jth variable

or in equation form,

Ji;j ¼
oresi

oxj
: ð32Þ

Eq. (31) is solved for dxk and the new Newton iteration value for x is then computed from,

xkþ1 ¼ xk þ d dxk: ð33Þ

The damping parameter, d 2 ½0; 1�, is computed to keep the components of x in physically realizable space

(i.e., ag 2 ½0; 1�, P > 0, Ug > 0, Uf > 0, and Tw > 0). Note that the same damping value is applied to all of

the updates. The damping of the update vector can be interpreted geometrically as preserving the update

vectors direction but shortening its length. This damping of the Newton update vector dx increases the

robustness of Newton’s method. An additional constraint that was not included in this work is that

Ug PUf . This constraint becomes more important for applications near the critical point of water where the

gas and fluid state become equivalent.

This iteration on x is continued until the nonlinear residual res is small. Here small is defined by

kresðxkÞk2 < tolkresðx0Þk2; ð34Þ

where tol ¼ 1:0� 10�8 is the nonlinear tolerance.

If the Jacobian matrix J (Eq. (32)) is computed analytically, and the linear system (Eq. (31)) is solved
exactly, then this is simply the traditional Newton’s method for the solution of a nonlinear system of

equations. In the remainder of this section, modifications to the basic Newton algorithm to improve its

efficiency and storage are presented.

The first modification is referred to as an Inexact Newton’s method [32]. The word inexact refers to the

accuracy of the solution of the linear system not the accuracy of the nonlinear iteration. The nonlinear

tolerance given by Eq. (34) is identical for both the exact and inexact implementations. The basic idea

behind an inexact Newton’s method is only to solve the linear system to a tight tolerance when the added

accuracy effects the convergence of the Newton iteration. This is accomplished by making the convergence
of the linear residual proportional to the nonlinear residual or in equation form,

kJk dxk
m þ resðxkÞk2 < gkresðxkÞk2: ð35Þ
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In these equations, the subscript m refers to the ‘‘mth’’ iteration of the linear solver and g ¼ 1:0� 10�3 is a

linear tolerance.

The linear solver used in this study is the Arnoldi based GMRES [33] iterative Krylov solver. The Krylov
solver constructs the ‘‘mth’’ iteration from,

dxk
m ¼ dxk

0 þ a0r0 þ a1Jr0 þ a2J
2r0 þ � � � þ amJ

mr0; ð36Þ

where r0 ¼ Jk dxk
0 þ resðxkÞ and dxk

0 is the initial guess at the linear solution. It is important to note that the

Jacobian matrix only shows up as the product of the Jacobian matrix and a vector in Eq. (36). Therefore, if

the action of the Jacobian matrix can be approximated, the Jacobian matrix itself is never required for the
Krylov solution. Fortunately, the action of the Jacobian matrix [34] can be approximated by

Jv � resðxþ �vÞ � resðxÞ
�

; ð37Þ

where,

� ¼
PN

i¼1 bxi
Nkvk2

; ð38Þ

and b ¼ 1:0� 10�8, N is the number of unknowns, and v is a Krylov vector (i.e. v 2 ðr0; Jr0; J2r0; . . .Þ). If
one employs the Jacobian-free approximation (Eq. (37)), then the work associated with forming the Ja-
cobian matrix (Eq. (32)) and the storage for the Jacobian matrix can be eliminated. If the number of Krylov

iterations is small (see [35] for a precise definition of what is meant by small) this approximation saves both

CPU time and storage for the nonlinear iteration. The optimization of the linear iteration will be addressed

next.

Because GMRES stores all of the previous Krylov vectors, it is necessary to keep the number of iter-

ations small to prevent the storage and CPU time from becoming prohibitive. This minimization of the

Krylov iterations can be accomplished by right preconditioning the linear system,

JkP�1Pdxk ¼ �resðxkÞ; ð39Þ

where P�1 approximates J�1. The traditional approach to preconditioning is to construct P � J and then

approximately compute P�1 in a fast manner. The physics-based preconditioning approach is based on the

observation that J�1 is really a linearized time step and therefore P�1 can be any time step algorithm. The

time advancement procedure employed in this study as the physics-based preconditioner is the Operator

Split, Semi-Implicit (OSSI) solution method employed by RELAP5.

It is important to note that there is no dependency between the Crank–Nicolson time integration and

the JFNK method. The JFNK method only depends on the evaluation of the residuals. Other higher or-

der in time temporal integration methods (such as, Runge–Kutta, Adams–Bashford, and Backward
difference formulas) could just as easily been incorporated into the residuals to achieve higher temporal

accuracy.
5. Using an OSSI solution as a preconditioner

This section is divided into two parts; first an overview of using physics-based preconditioning and

second a description of the specifics of using the OSSI method as a physics-based preconditioner.
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5.1. Overview

To demonstrate the OSSI solver as a preconditioner, one needs to write the OSSI solution method in the
same form as Eq. (31),

Pdx ¼ �res: ð40Þ

Written as a solver, P�1 is a linear operator which maps a residual vector into an update vector,

dx ¼ �P�1res: ð41Þ

Traditionally, the symbol P�1 represents the inverse of the matrix P. In this paper this nomenclature has
been extended to include any linear operator that computes an update vector, dx, from a residual, res

(details are given in Appendix A). Following is a discussion of the implementation of the physics-based

preconditioner into the JFNK solution.

In the implementation of right preconditioning (Eq. (39)) a new vector (y) is defined by

yk ¼ Pdxk: ð42Þ

Using Eq. (42), the preconditioned system is given by

JkP�1yk ¼ �resðxkÞ: ð43Þ

One solves Eq. (43) for yk and then computes dxk from,

dxk ¼ P�1yk: ð44Þ

It is important to make a few observations here. First, when using preconditioning, one never needs to
define the linear operator P, since it is never required. Second, in the OSSI solution, a residual is given and

an update vector is computed by the linear process P�1 (see Eq. (41)). When the OSSI method is employed

as a preconditioner, it is given a Krylov vector [v 2 ðr0; Jr0; J2r0; . . .Þ] and it computes the preconditioned

vector by applying the linear process which represents the OSSI time advancement, P�1. Therefore, the

identical software that computes a time step advancement when OSSI is used as a solver is also used to

implement OSSI as a preconditioner. The only change is when OSSI is a solver the right-hand-side is a

residual vector and when OSSI is a preconditioner the right-hand-side is a Krylov vector.

There are additional details associated with the Jacobian-free implementation. The preconditioned
version of the Jacobian-free approximation (Eq. (37)) is computed from,

(1) Given a vector y, compute z ¼ P�1y.

(2) From z then compute Jz using

Jz � resðxþ �zÞ � resðxÞ
�

: ð45Þ

Therefore one can solve the right preconditioned system,

JkP�1Pdxk ¼ �resðxkÞ; ð46Þ

without defining P (but knowing how to compute the action of P�1 on a vector) and without computing the
Jacobian matrix, J (but knowing how to compute the action of J on a vector).

Therefore, given an existing time stepping algorithm which computes an update from a residual, the fully

coupled nonlinear system can be solved using the physics-based preconditioned Jacobian-free Newton–
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Krylov method without any knowledge of the Jacobian matrix but simply knowing how to compute the

residuals of the equations.

This approach should be contrasted to the more traditional preconditioning approach where the ma-
trices J and P are computed element by element. These two very large matrices are then passed to a linear

solver package which computes the update. The formation and storage of J and P have made imple-

mentation of Newton’s method difficult for these types of equations sets. But, now when one employs the

physics-based Jacobian-free Newton–Krylov method, the only storage that is required (besides storing the

Krylov vectors required by GMRES) is the storage of the small matrices used in the operator split semi-

implicit solution.

Additionally since the OSSI method is used as a preconditioner, it does not effect the accuracy or sta-

bility of the JFNK method. The preconditioner simply effects the amount of CPU time to achieve the levels
of accuracy set by the input numbers tol in Eq. (34) and g in Eq. (35). The stability is insured by the fact

that all variables have a new time (nþ 1) contribution in the solution (Eqs. (15), (17), (19), (21), (23), (25),

and (27)) as long as HP 1
2
.

5.2. Equations

In this section the equations that are solved in the OSSI method are presented. These equations include a

variety of linearizations and operator splitting that allow the 1-D two-phase flow equations and the 2-D
nonlinear heat conduction equations to be solved by only inverting tridiagonal matrices. The residuals in

these equations are the same as in the JFNK method but here they are evaluated with old time (time level n)
variables. It should be noted that when the time level nþ 1 terms in the residuals (Eqs. (15), (17), (19), (21),

(23), (25), and (27)) are replaced with time level n terms, the time derivative contributions cancel out and the

results are identical for any value of H 2 ½0; 1�. This evaluation of the residuals with old time variables is

signified in the following equations as a superscript n on the residual (e.g., rescgn).

From the linearized equation of state, given in Appendix B, the updates for temperature and density

used in the following equations are given by

dTs ¼
oT
oP


 �
0

dP ; ð47Þ
dTg ¼
oT
oP


 �
0

dP þ oTg
oUg


 �
0

dUg; ð48Þ
dTf ¼
oT
oP


 �
0

dP þ oTf
oUf


 �
0

dUf ; ð49Þ
dqg ¼
oqg

oP


 �
0

dP þ
oqg

oUg


 �
0

dUg; ð50Þ
dqf ¼
oqf

oP


 �
0

dP þ oqf

oUf


 �
0

dUf : ð51Þ

It is important to note that because of the linearized equation of state employed for this study, the above

approximations are exact. In a more realistic equation of state these linearizations employed by the OSSI

solution method are partially responsible for loss or gain in mass of the system.
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The linearization of the equation of state is one of the sources of mass error in the OSSI solution al-

gorithm. Another source, which can be significantly larger, is the enforcement of the constraint that

ag 2 ½0; 1�. In the implicitly balanced solution this constraint is enforced by the choice of d in Eq. (33). In the
OSSI solution, enforcement of this constraint causes mass to be added or removed from the simulation.

The standard strategy is to add or remove the mass if it is ‘‘small’’ but to lower the time step if it is large.

The danger of this strategy is if the error is ‘‘small’’ but it is always adding (or removing) mass for many

time steps. The result of summing this error over a large number of time steps can lead to catastrophic mass

errors that are on the same order as the total mass in the system being modeled.

Because the implicitly balanced solution uses the real equation of state (not the linearized form in Eqs.

(47)–(51)) there is no mass error associated with this approximation employed by the OSSI solution. In

addition, because the damping parameter, d, in Eq. (33) is chosen to keep ag 2 ½0; 1� this second source of
mass error in the OSSI solution has also been removed.

Another source of errors in the OSSI algorithm comes from the evaluation of the heat transfer and

friction coefficients at time level n. Because these coefficients are constant in this study (instead of a highly

nonlinear function of all of the state variables which is physically more realistic) the error associated with

evaluating the coefficients with old time state values is zero. In the more realistic case of nonlinear heat

transfer and friction coefficients this error can be very large.

The linearized equations solved in the OSSI solution are presented below. Recall that the conservation of

mass and energy are cell centered equations (subscript ‘‘i’’), the momentum equations are cell face equa-
tions (subscript ‘‘iþ 1

2
’’), and the wall energy equation is two-dimensional cell centered (subscript ‘‘i; j’’). As

before, the implied subscripts are ignored for clarity of presentation.

The semi-implicit conservation of mass equations in the gas and fluid phase are

Vf
Dt

ang dqg

h
þ qn

g dag
i
þ Dyf _ðagqgÞ

n
iþ1

2

dvg;iþ1
2

h
� _ðagqgÞ

n
i�1

2

dvg;i�1
2

i

þ Vf
h�g � h�f

 !n

Hn
iga

n
i ðdTs

h
� dTgÞ þ Hn

ifa
n
i ðdTs � dTfÞ

i
¼ �rescgn; ð52Þ

and

Vf
Dt

anf dqf

�
� qn

f dag
�
þ Dyf _ðafqfÞ

n
iþ1

2
dvf ;iþ1

2

h
� _ðafqfÞ

n
i�1

2
dvf;i�1

2

i

� Vf
h�g � h�f

 !n

Hn
iga

n
i ðdTs

h
� dTgÞ þ Hn

ifa
n
i ðdTs � dTfÞ

i
¼ �rescfn: ð53Þ

The update terms (d’s) are implicit, and all other terms are explicit. For stability the velocities in the ad-

vection terms are implicit. It is important to note that the interphase mass exchange terms have also been

made implicit since the condensation and vaporization rates induce fast time scales into the equations.

From an accuracy point of view it is important to note that the coefficients of the phase change terms are

evaluated at time level ‘‘n’’.
The semi-implicit conservation of momentum equations for the gas and fluid phase are given by

VfðagqgÞ
n

Dt
dvg þ Dyfagn dPiþ1ð � dPiÞ þ VfðFwgawgjvgjÞn ðagqgÞ

n
h i2

dvg þ VfC
n
gðdvi � dvgÞ

þ VfðaiFIÞnjvng � vnf jðdvg � dvfÞ ¼ �resmgn; ð54Þ

and
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VfðafqfÞ
n

Dt
dvf þ Dyfaf n dPiþ1ð � dPiÞ þ VfðFwfawf jvf jÞn ðafqfÞ

n
h i2

dvf � VfC
n
gðdvi � dvfÞ

þ VfðaiFIÞnjvng � vnf jðdvg � dvfÞ ¼ �resmfn: ð55Þ

In these equations it is important to note that the advection and buoyancy terms are purely explicit so their

entire contribution comes from the residuals resmgn and resmfn. The pressure is implicit to allow the semi-

implicit stability time step to be larger than the sound speed Courant stability limit. In these momentum
equations, the frictional terms have been made implicit since they introduce fast time scales into the so-

lution. But again, their coefficients are at old time.

The semi-implicit conservation of energy equations in the gas and fluid phase are

Vf
Dt

angU
n
g dqg

h
þ ðqn

gU
n
g þ PnÞdag þ angq

n
g dUg

i
þ Dyf _ðagqgUgÞ

n�
þ Pi _ðagÞ

on

iþ1
2

dvg;iþ1
2
� _ðagqgUgÞ
n

þ Pi _ðagÞ
on

i�1
2

dvg;i�1
2

�
� VfHn

iga
n
i ðdTs � dTgÞ þ

Vfh�g
h�g � h�f

 !n

Hn
iga

n
i ðdTs

h
� dTgÞ þ Hn

ifa
n
i ðdTs � dTfÞ

i

¼ �resegn; ð56Þ

and

Vf
Dt

anfU
n
f dqf

�
� ðqn

fU
n
f þ PnÞdag þ anfq

n
f dUf

�
þ Dyf _ðafqfUfÞ

n�
þ Pi _ðafÞ

on

iþ1
2

dvf;iþ1
2
� _ðafqfUfÞ
n

þ Pi _ðafÞ
on

i�1
2

dvf ;i�1
2

�
� VfHn

ifa
n
i ðdTs � dTfÞ �

Vfh�f
h�g � h�f

 !n

Hn
iga

n
i ðdTs

h
� dTgÞ þ Hn

ifa
n
i ðdTs � dTfÞ

i

¼ �resefn: ð57Þ

In these equations the velocity terms in the advection of energy are implicit for stability and again the

energy exchange between equations has been made implicit. It should be noted that the energy exchange

with the wall is explicit and is therefore included in the residuals reseg and resef. It should be noted that it is

possible in the OSSI solution to make the wall-fluid energy exchange implicit [2,3] but all results presented

in this paper for the OSSI solution use explicit wall heat transfer to the fluid.

To describe the wall heat transfer solution used in the OSSI solution, two new variables are defined,

dT 0
w ¼ T nþ1=2 � T n; ð58Þ
dT 00
w ¼ T nþ1 � T nþ1=2; ð59Þ

from which on can write,

dTw ¼ dT 0
w þ dT 00

w ¼ T nþ1 � T n: ð60Þ

With these new definitions the heat conduction equation in the wall now follows.

VwqwC
n
p

Dt=2
ðdT 0Þ � Dyw

Dx
jn
x;iþ1=2ðdT 0

iþ1

h
� dT 0Þ � jn

x;i�1=2ðdT 0 � dT 0
i�1Þ
i
þ VwHn

wga
n
wgðdT 0

1;jÞ

þ VwHn
wfa

n
wfðdT 0

1;jÞ ¼ �resewn ð61Þ
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VwqwC
n
p

Dt=2
ðdT 00Þ � Dx

Dyw
jn
y;jþ1=2ðdT 00

jþ1

h
� dT 00Þ � jn

y;j�1=2ðdT 00 � dT 00
j�1Þ
i
þ VwHn

wga
n
wgðdT 00

1;jÞ

þ VwHn
wfa

n
wfðdT 00

1;jÞ ¼ �resewnþ1
2 ð62Þ

In the OSSI solution, Eq. (61) is solved for dT 0, and then the half time step temperatures are computed from

T nþ1
2 ¼ T n þ dT 0. The half time residual (resewnþ1

2) is computed from T nþ1
2 and then Eq. (62) is solved for dT 00.

Finally the total update is computed from dT ¼ dT 0 þ dT 00. It should be noted that in RELAP5 equations

(61) and (62) are solved for T nþ1=2 and T nþ1 instead of dT 0 and dT 00.

Because the dominant flow direction of energy is in the y direction, the physics-based preconditioner
only solves Eq. (62) for a full time step instead of a half time step. The details that describe how these

equations are solved in the OSSI method are presented in Appendix A.
6. Results

This section presents results from two idealized representations of nuclear reactor transients. The first

transient is a simplified model of a reactor SCRAM. In a SCRAM, the control rods are quickly inserted
into the reactor to slow down the nuclear fission reaction. The second transient will be a simplified version

of a rod ejection. In a rod ejection accident, the reactor is at low power and one control rod is removed

bringing the power level up.

The input variables that describe the geometry, the state of the fluid, and the state of the pipe are given in

Appendices B and C. Therefore the results section will only include the information that is unique to the

transient being studied.

Three versions of each transient will be presented. The difference between the transients will be the wall

thickness. The three transients will include a one inch, a two inch, and a four inch wall. The power input,
and the fluid conditions will be the same in each of these versions. This means that all of the fast time scales

associated with condensation, vaporization, and interfacial and wall friction are the same in all three

versions. By modifying the thickness of the wall (note that Dyw ¼ 2:5� 10�3 m is a constant and ny ¼ 10 for

the 100 version, ny ¼ 20 in the 200 version, and ny ¼ 40 in the 400 version) the slow time scale, associated with

the wall’s gain or loss of energy, is made longer as the wall is made thicker.
6.1. SCRAM

Results for the three versions of the SCRAM problem are presented in this section. In a real SCRAM the

reactor power is lowered over the time that it takes for the control rods to be inserted into the reactor core.

When the control rods are inserted, the reactor still produces a small amount of energy due to the decay

heat of the fuel. Since this simplified model does not contain neutron kinetics, this transient will be modeled

by instantaneously setting the power input on the right side of the wall to zero. When the power addition is

removed the wall begins to cool.

To compress the two-dimensional temperature data from the wall into a single point that can be plotted

as a function of time, a new variable will be defined (which is important to nuclear reactor safety) which will
be called the peak clad temperature. The peak clad temperature will be defined as the maximum temper-

ature of the wall cells that are adjacent to the fluid (the first column of cells on the left side of the wall in

Fig. 1). Fig. 2 presents the peak clad temperature for all three versions of the SCRAM problem (see Table

1). The transients are stopped (t ¼ tf ) when the peak clad temperature falls within 20% of the no power

temperature of 590 K. In this figure one sees that the time scale of the transient slows as the wall is made

thicker.
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Fig. 2. Peak clad temperature vs. time for SCRAM.

Table 1

SCRAM input

Wall nx ny Lx (m) Ly (m) tf (s)

100 40 10 5.0 0.025 85

200 40 20 5.0 0.050 315

400 40 40 5.0 0.100 1135
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Before presenting results about accuracy a short discussion of error needs to occur. Because of the

complexity of this nonlinearly coupled system of equations, there is no exact solution for the test problems.

For this paper the ‘‘exact’’ solution will be a second-order in time Newton–Krylov solution run at a time

step ten times smaller than the smallest data presented on the plot. From this ‘‘exact’’ solution the vapor

velocity is extracted. The vapor velocity was chosen since it is one of the most sensitive variables. The

‘‘error’’ is then computed from the following equation.

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx
i¼1

ðvg;i � veg;iÞ
2

s
; ð63Þ

here veg is the velocity from the ‘‘exact’’ solution.

The variable that will be used to represent time discretization in the following plots will be the CFL

number. If one defines

vmax ¼ maxðvg;i; vf;iÞ : i 2 ½1; 2; . . . ; nx�; ð64Þ

then the CFL number is given by

CFL ¼ vmaxDt
Dx

: ð65Þ
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Fig. 3 presents a time convergence study for all three versions of the SCRAM problem for both the OSSI

method and the JFNK method. The OSSI data is represented by circles and the larger the circle the thicker

the wall. The JFNK data is represented by squares and the larger the square the thicker the wall. To see
plots of the OSSI and JFNK solutions converging to the same solution under time step convergence see

Fig. 8 and Fig. 9 in Appendix D.

There are three observations to be made about Fig. 3. The first deals with the three OSSI data points that

have an error two orders of magnitude larger than any of the other data. This large error is caused by

oscillations in the solution that are discussed further in Appendix D. The second is that the error for the

OSSI data is significantly larger than for the JFNK method. For the OSSI solution to obtain the same level

of error as the JFNK method running at time steps well above the material Courant stability limit, the OSSI

method has to take time steps with CFL numbers approximately 1.0� 10�2. Finally as the wall thickness
increases, the accuracy of the JFNK method increases while the accuracy of the OSSI method ap-

pears independent of the wall thickness. All three observations agree with the analysis presented in [25]

which indicates that the implicitly balanced solution (JFNK) has truncation error terms that are related to

the dynamical (slow) time scale of the problem where the OSSI solution has truncation error terms asso-

ciated with the normal mode (fast) time scales. This test problem was constructed to have identical normal

mode time scales (condensation, vaporization, friction) but a large variance in the dynamical (wall energy

loss) time scales.

Similar to Fig. 3, Fig. 4 has error on the ‘‘y’’ axis, but the ‘‘x’’ axis is now CPU time instead of CFL
number. This plot which compares error and CPU time will be referred to as an ‘‘efficacy’’ plot. This plot is

an efficient way to compare two different algorithms. A horizontal line on this plot determines which

method is fastest for a given level of accuracy. A vertical line on this plot indicates which method is more

accurate for a given amount of CPU time.

This plot shows that for the one inch wall simulation, which has a ‘‘fast’’ dynamical time scale, the OSSI

method can provide a faster solution which is less accurate. For scoping studies this lower level of accuracy

may not be as important, so the OSSI method may be a very good choice. However, for the four inch

problem with a slow dynamical time scale, the JFNK method provides a more accurate solution for the
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same amount of CPU time compared to any OSSI data point with an acceptable (non-oscillatory) solution.

For problems with slow dynamical time scales the implicitly balanced solution is clearly the better choice.

There are three observations to be made based on these two algorithms and the data presented so far.

The first is that because of the linearized equation of state and the constant friction and heat transfer

coefficients the error in the OSSI method has been minimized. Since the friction and heat transfer coeffi-

cients are constant (instead of nonlinear functions of the state variables), the time lagging of these coeffi-

cients from time level nþ 1 to time level n does not introduce any error. Also, the OSSI solution method

requires that the densities and temperatures be represented as linear functions of pressure and energies.
Since the equation of state is linear, there is no error in representing density and temperature as a linear

function of pressure and energy. A real equation of state or nonlinear friction and heat transfer coefficients

would increase the error of the OSSI method. Second, since the same fluid flow algorithm is used both as

the OSSI solver and the physics-based preconditioner (note the physics-based preconditioner uses 1-D heat

conduction instead of the 2-D heat conduction in the OSSI solver) the optimization of this algorithm has a

positive impact on reducing the CPU time of both solution methods. The final observation is that since the

physics-based preconditioned implicitly balanced solution contains both solution methods, one can switch

between the OSSI and JFNK solutions based on the required level of accuracy and the dynamical time scale
of the problem.
6.2. Rod ejection

In a rod ejection transient the reactor power level has been brought down due to the insertion of the

control rods into the nuclear reactor core. The transient is initiated by one of the control rods being

‘‘ejected’’ from the reactor core. When this occurs, the fission reaction rate increases in the area where the

control rod has been removed. This results in a very rapid rise in the power level of the reactor. For this test
problem it will be assumed that there is only one control rod in the reactor and when it is removed, the
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reactor comes up to full power. Again, since there is no neutron kinetics model in the simulation, the power

level increase will be modeled as an instantaneous increase at time zero.

Fig. 5 shows the peak clad temperature as a function of time for the three versions of the rod ejection
problem (see Table 2). For these test problems the transient is terminated when the peak clad temperature

reaches approximately 80% of its maximum value of 700 K. Due to the symmetry of the two test problems

these time scales are almost identical to the SCRAM test problem (see Table 1).

Fig. 6 presents a time convergence plot for the rod ejection test problem. This plot is very similar to the

SCRAM problem in Fig. 3. Again, the implicitly balanced solution has a decrease in error as the dynamical

time scale of the problem is increased.

In Fig. 7 the efficacy plot is similar to that in Fig. 4. Here one can see that the JFNK method provides a

more accurate solution than the OSSI method. For the 400 wall problem, with a slow dynamical time scale,
the implicitly balanced method provides a highly accurate solution for the same amount of CPU time as the

OSSI method.

6.3. Preconditioner effectiveness

This section will focus on the symbiotic relationship between the implicitly balanced solution algorithm

and the physics-based preconditioner which employs the more traditional OSSI method. The OSSI physics-

based preconditioner provides a very fast estimate of the problem solution. The implicitly balanced JFNK
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Fig. 5. Peak clad temperature vs. time for rod ejection.

Table 2

Rod ejection input

Wall nx ny Lx (m) Ly (m) tf (s)

100 40 10 5.0 0.025 95

200 40 20 5.0 0.050 335

400 40 40 5.0 0.100 1205
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method then takes this approximate solution and eliminates the errors associated with the fast time scales

providing a high level of accuracy. The combination of the two algorithms results in a fast and accurate

solution method.
To precondition a large linear system, one needs to cluster the eigenvalues of the matrix and to improve

the condition number of the matrix by lowering the spread in the size of the eigenvalues. The key to physics-

based preconditioning is to recognize that the eigenvalues of the matrix are related to physical time scales in

the simulation. The fast time scales (related to the small eigenvalues) are associated with interphase mass,
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momentum, and energy transfer as well as energy and momentum transfer and energy transfer with the

wall. It is important to note that except for energy transfer with the wall, the OSSI method has all of the

other fast time scales implicit. This implicitness in the fast time scales in the physics-based preconditioner
seems to reduce the number of Krylov iterations in a very efficient manner.

Another important advantage of the physics-based preconditioner is that the linear systems in the

preconditioner are significantly smaller than the Jacobian matrix. The Jacobian matrix for this model has

nxðny þ 6Þ unknowns. The physics-based preconditioner preconditions this system by solving nx systems of

size ny for the heat conduction and one system of size nx for the two-phase fluid flow (see Appendix A for

details). In addition, all of these preconditioner matrices are tridiagonal which means that they can be

solved exactly in three times the number of unknowns worth of work. Thus the cost for preconditioning the

Jacobian matrix is O(3nxðny þ 1Þ). For comparison, a direct solve of the Jacobian matrix would be
O(½nxðny þ 6Þ�3). Table 3 shows the discretization and the number of unknowns for the different variations

of wall thickness.

Table 4 shows the effect of the preconditioner on the solution algorithm for the 100 SCRAM problem.

The first data presented is the average number of Krylov iterations per time step GMRES
Dt

� 	
which repre-

sents the amount of linear solver work required to solve the nonlinear system per time step. The second data

is the maximum number of Krylov vectors that are needed to be stored by the GMRES solver (Max

GMRES). The maximum number of Krylov vectors that need to be stored is the maximum number of

Krylov iterations per Newton iteration over all of the Newton iterations and time steps in the simulation. It
should be noted that the size of a Krylov vector is equal to the total number of unknowns in the problem. It

should also be noted that the GMRES algorithm can be restarted to minimize the amount of Krylov

vectors that need to be stored but this modification of the GMRES algorithm has a negative impact on its

convergence rate [36]. The third data presented is the number of seconds of computer time for the simu-

lation (CPU). These three pieces of data are presented for both the preconditioned and unpreconditioned

solutions for three different CFL numbers.

Table 5 presents the raw data of Table 4 in a compressed form where the unpreconditioned numbers are

divided by the preconditioned numbers. Table 5 shows that for a variety of CFL numbers the precondi-
tioner lowers the number of Krylov iterations by roughly a factor of 45. This reduction of a factor of 45

only results in a CPU savings of a factor of 15, meaning that the construction and solution of the pre-

conditioner costs about three times as much as a single Krylov iteration. One obvious way to reduce this

preconditioning cost, that has not yet been implemented, would be to form the preconditioner once per

Newton iteration and store the result. The current implementation forms the preconditioning matrix on
Table 3

Problem size for different wall thicknesses

Wall nx ny 1-D unknowns 2-D unknowns Total unknowns

100 40 10 240 400 640

200 40 20 240 800 1040

400 40 40 240 1600 1840

Table 4

100 SCRAM linear solution

CFL Preconditioned No preconditioning

GMRES
Dt Max GMRES CPU (s) GMRES

Dt Max GMRES CPU (s)

4 19 17 17 845 214 270

1 16 8 28 780 171 474
1
4

13 6 78 623 160 1218



Table 6

200 SCRAM linear solution

CFL Preconditioned No Preconditioning

GMRES
Dt Max GMRES CPU (s) GMRES

Dt Max GMRES CPU (s)

4 28 17 52 1012 212 938

1 17 9 109 879 173 2368
1
4

13 7 334 625 159 6350

Table 7

200 SCRAM ratios

CFL Ratio of no preconditioning to preconditioning

GMRES
Dt Max GMRES CPU (s)

4 36 12 18

1 52 19 22
1
4

49 23 18

Table 5

100 SCRAM ratios

CFL Ratio of no preconditioning to preconditioning

GMRES
Dt Max GMRES CPU (s)

4 45 13 16

1 48 21 17
1
4

49 27 16
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every Krylov iteration. Table 5 also shows that the storage required for the Krylov solution is lowered by

more than an order of magnitude when the preconditioner is used. It is important to note that the total
storage required for the preconditioner linear solution is 3� nx (assuming that ny6 nx). This should be

compared to the storage of the Krylov linear solver which is (Max GMRES� nxðny þ 6Þ).
Table 6 presents the same raw data for the 200 SCRAM problem and Table 7 presents the compressed

data for the same problem. Table 5 and Table 7 can be summarized in the following three bullets.

• The average number Krylov iteration per time step is reduced by a factor of 46.

• Employing the physics-based preconditioner lowers the average amount of storage required by the

GMRES algorithm by a factor of 19.

• The average computer time per simulation is reduced by a factor of 18.
7. Conclusions and future work

Results have been presented for variations of two simulations which show that the implicitly balanced

solution, obtained by employing a physics-based preconditioned version of the Jacobian-free Newton–

Krylov algorithm, provides a significantly more accurate solution to the two-phase flow equations coupled

to nonlinear heat conduction than the traditional approach based on operator splitting the conduction

from the two-phase flow and then linearizing these split solutions. Efficacy results are presented that show

for some versions of the test problems, the implicitly balanced solution can achieve this higher level of

accuracy for the same amount of computer time. Finally, data is presented that indicates that the same level
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of error can be obtained using larger time steps with the implicitly balanced solution when the dynamical

time scale of the solution is slower.

Future work should include a detailed eigen analysis of the physics-based preconditioner to determine its
effect on the eigen spectrum of the Jacobian matrix. Work should also be done to compare a traditional

Newton’s method, where the Jacobian matrix is formed and the preconditioner is based on an approximate

inversion of the Jacobian matrix, to the OSSI and JFNK methods. By comparing to a traditional Newton

method, one could determine how much the JFNK improvements over the OSSI method are from the

physics-based preconditioner and the Jacobian-free implementation and how much of the improvements

are from an implicitly balanced solution.
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Appendix A. Semi-implicit algorithm

This appendix will describe how the equations presented in Section 5 are solved in the Operator Split,
Semi-Implicit (OSSI) algorithm. This same software that implements the OSSI solution procedure is used

for both the physics-based preconditioner and the OSSI solution method. The equations are solved by the

following eight steps.

(1) The first step in the OSSI algorithm is the operator splitting of the two-dimensional heat conduction.

The heat conduction equations (61) and (62) are solved using a tridiagonal solution procedure. Note

that the equations are tridiagonal because only the horizontal terms are implicit in Eq. (61) and only

the vertical terms are implicit in Eq. (62). Eq. (61) is solved for dT 0 and Eq. (62) is solved for dT 00.

The new time wall temperature to be used in the fluid equations is then computed from,

T nþ1 ¼ T n þ dT 0 þ dT 00: ðA:1Þ

It is important to note that the heat exchange term with the fluid is computed using the old time fluid

temperatures, thus contributing an explicit component to the energy coupling between the fluid and the

wall. The consequences of this choice will be demonstrated in Appendix D.
(2) The second step is to solve the momentum equations for their dependence on pressure (see Table 8).

Note an ‘‘X’’ in Table 8 indicates a non-zero coefficient of the variable in the column head. To accom-

plish this one solves the two momentum equations (54) and (55) simultaneously for dvg;iþ1=2 and dvf;iþ1=2

in terms of dPiþ1, dPi, resmgniþ1=2, and resmfniþ1=2.

(3) In the third step these two momentum equations and the five linearized state equations (47)–(51) are

substituted into the two continuity equations (52) and (53) and two energy equations (56) and (57)
Table 8

Momentum 2� 2

dvg;iþ1=2 dvf;iþ1=2 dPi dPiþ1 r.h.s.

Momentum gas X X X X �resmgiþ1=2

Momentum fluid X X X X �resmf iþ1=2



Table 9

Pressure 4� 4

dUg;i dUf ;i dag;i dPi�1 dPi dPiþ1 r.h.s.

Energy gas X X X X X X �resegi þ resm

Energy fluid X X X X X X �resef i þ resm

Mass gas X X X X X X �rescgi þ resm

Mass fluid X X X X X X �rescf i þ resm
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to eliminate dvg;iþ1=2, dvg;i�1=2, dvf ;iþ1=2, dvf;i�1=2, dTs;i, dTg;i, dTf ;i, dqg;i, and dqf ;i. This results in four equa-

tions in terms of six unknowns (dUg;i, dUf ;i, dag;i, dPi�1, dPi, and dPiþ1) and eight residuals (resmgniþ1=2,

resmgni�1=2, resmfniþ1=2; resmfni�1=2; rescg
n
i , rescf

n
i , reseg

n
i , and resefni ). To simplify nomenclature resm will

be defined by

resm ¼ resmgiþ1=2 þ resmgi�1=2 þ resmf iþ1=2 þ resmf i�1=2: ðA:2Þ

The results of these substitutions are represented in graphical form in Table 9.

(4) These four equations are row reduced by Gaussian elimination into upper triangular form. This results
in a tridiagonal matrix for dP in terms of the eight residuals.

(5) This tridiagonal system is then solved for dP .
(6) These dP ’s are then back substituted into the block 4� 4’s to solve for dag, dUf , and dUg.

(7) The dP ’s are then back substituted into the block 2� 2’s to solve for dvg, and dvf .
(8) The new time variables are then solved for by adding the d’s to the old time values and that is the end of

a time step.
Appendix B. Equation of state

The specific heat at constant pressure is computed from

Cp ¼ CpT0Tw þ Cp0; ðB:1Þ

where CpT0 ¼ 0:14 J=kg and Cp0 ¼ 470 J=kgK. The thermal conductivities are computed from,

jx ¼ jy ¼ jT0Tw þ j0; ðB:2Þ

where jT0 ¼ 1:36� 10�2 W=m and j0 ¼ 11:5 W=mK. These linearizations where computed from data in

Incropera and Dewitt [37] for Stainless Steal AISI 304 (Table A.1 on page A5).

The following are the linearized equations of state employed in this study.

Ts ¼ T0 þ
oT
oP


 �
0

ðP � P0Þ; ðB:3Þ
hgs ¼ hgs0 þ
ohgs
oP


 �
0

ðP � P0Þ; ðB:4Þ
hfs ¼ hfs0 þ
ohfs
oP


 �
0

ðP � P0Þ; ðB:5Þ
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Tg ¼ T0 þ
oT
oP


 �
0

ðP � P0Þ þ
oTg
oUg


 �
0

ðUg � Ug0Þ; ðB:6Þ
Tf ¼ T0 þ
oT
oP


 �
0

ðP � P0Þ þ
oTf
oUf


 �
0

ðUf � Uf0Þ; ðB:7Þ
qg ¼ qg0 þ
oqg

oP


 �
0

ðP � P0Þ þ
oqg

oUg


 �
0

ðUg � Ug0Þ; ðB:8Þ
qf ¼ qf0 þ
oqf

oP


 �
0

ðP � P0Þ þ
oqf

oUf


 �
0

ðUf � Uf0Þ: ðB:9Þ

These linearizations were derived from data in Van Wylen and Sonntag [38] (Table A.1.2 on page 618)

around a point on the water-steam saturation line that corresponded to a pressure of 1.0� 107 Pa.

The phasic enthalpies are computed from,

hg ¼ Ug þ
P
qg

; ðB:10Þ
hf ¼ Uf þ
P
qf

: ðB:11Þ

The linearization points and the derivatives are presented in Table 10.
Table 10

Equation of state values

Variable Value

T0 584.21 K

hgs0 2:7247� 106 J=kg

hfs0 1:40756� 106 J=kg
@Tg
@Ug

� �
0

2:112� 10�4 kgK=J

P0 1:0� 107 Pa

Ug0 2:544� 106 J=kg

qg0 5:547� 101 kg=m3

@qg
@Ug

� �
0

�7:766� 10�5 kg2=m3 J

@qf
@P

� 	
0

1:290� 10�6 kg=m3 Pa

@T
@P

� 	
0

7:375� 10�6 K=Pa

@hgs
@P

� �
0

�1:825� 10�2 J=kgPa

@hfs
@P

� 	
0

4:342� 10�2 J=kgPa

@Tf
@Uf

� �
0

1:877� 10�4 kgK=J

@qg
@P

� �
0

7:376� 10�6 kg=m3 Pa

Uf0 1:393� 106 J=kg

qf0 6:887� 102 kg=m3

@qf
@Uf

� �
0

�3:755� 10�4 kg2=m3 J



Table 11

Input values

Variable Value

nx 40

Dyf 0.1963 m

g 9.8 m=s2

vg0 0.1 m/s

Hig 1:0� 105 W=m5K

P0 1.0�107 Pa

Ug0 2:544� 106 J=kg

Fwg 1.0 kg�1

Hwg 4:0� 105 W=m5K

awg 1.0 m2

ai 1.0 m2

tol 1:0� 10�8

b 1:0� 10�8

Dx 0.125 m

Dyw 2.5�10�3 m

ag0 0.5

vf0 0.1 m/s

Hif 2:0� 106 W=m5K

FI 1:0� 106 kg=m6

Uf0 1:393� 106 J=kg

Fwf 100.0 kg�1

Hwf 4:0� 106 W=m5K

awf 1.0 m2

qw 7900.0 kg=m3

g 1:0� 10�3
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Appendix C. Inputs

The input values that are the same for both simulations are given in Table 11.

The shape of the energy source that represents the nuclear fissions is given by

QnwðxÞ ¼ 5:0� 108 cosðpðx� 2:5Þ=5Þ W=m4: ðC:1Þ
Appendix D. OSSI oscillations

In Fig. 3 of Section 6 it was noted that there were three data points that had errors that appeared to be

about two orders of magnitude larger than was expected. This appendix will explain the cause of this

discrepancy.

Fig. 8 shows the gas velocity as a function of distance down the pipe for four different CFL numbers and

two integration schemes. The first observation is that on the scale of this plot the two lines that represent
the JFNK solution at a CFL number of 64 (NK2 64), and the OSSI solution at a CFL number of 0.25 (SI

0.25) lay on top of each other. The other two lines (SI 1 and SI 0.5) represent the OSSI solution at CFL

numbers of 1.0 and 0.5, respectively. Both of these CFL numbers have very large errors in Fig. 3. From

Fig. 8 it is clear that there is an oscillation in the solution at a CFL number of 0.5 and that this oscillation is

larger for the CFL number of 1.0.

Fig. 9 shows the same data as Fig. 8. This plot is an error plot where the ‘‘exact velocity’’ (NK2 1.25e)2)
has been subtracted from the other four data sets. It should be noted that error is plotted on a logarithmic
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axis. In this plot one can see that for the OSSI solution with a CFL number of 1.0 the error is large across

the entire domain. For the CFL number of 0.5 the OSSI solution has a much smaller error for lower values
of x (the pipe inflow) and larger errors for higher values of x (the pipe outflow). Once the CFL number

drops to 0.25 the error is significantly smaller than for a CFL number of 0.5 but it is interesting to note that

the JFNK solution is much more accurate even at a large CFL number of 64.
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To show the source of the error, the void fraction will be plotted at every tenth time step for the control

volume closest to the outflow end (x ¼ 5). In Fig. 10 one can see that the OSSI solution is oscillating

(plotting more data points reveals that this oscillation frequency is on every time step). The JFNK solution

is completely smooth at the same time step level. It appears that the oscillation in void fraction on every

time step is caused by the fact that the phasic temperatures (Tf ; Tg) in the fluid wall transfer terms in the
liquid, gas, and wall energy equations (see Eqs. (56) and (57)) are explicit. This explicit temperature de-

pendence causes the void fraction to oscillate since the energy transfer from the wall is first being over

predicted, and the being under predicted on the next time step. This oscillation in void fraction then feeds

throughout the rest of the solution.
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